LA-UR -82-2417 ' (&‘7/‘ $2/02F - -/

Los Alamas National Laboratory is operaled by the University of Calforma for the United States Departme.it of Energy under contract W-7405-ENG-36.

LA-UR--82-2417

DEg82 021884

rree. LIMITED-ANGLE CT RECONSTRUCTION USING A PRIORI INFORMATION

——— DISCLAMER

Cea
T b it 1y e g

AUTHOR(S): Ken[:]h M. Hanson, M-4, MS-PG12

suBMITTED TO: Proceedings 1EEE Computer Society International Symposium
on Medical limaging and Image Interpretation, International
Congress Center, Berlin - October 26-28, 1982.

NASTER

KRS I

(_r— ". '

1 AR
Ry ncceptance of this article, the pubhsher recognizes that the U § Governmunt relinns g nonexclutive, toyially free hcenas o pubbah or teptoduc®
the pubihished form ot this contnbution, or to allow othims to do so. lor US Govertimenl purposas

Ihe Los Aamos National | abortory tequests that the publishor deetily this article as work pettor ned uadoe the auspies of the U S Department of [ nergy

ional Labor
| 08 AI2IANOS Loshlemosationaiaboratory

PONRM NG 838 e
81 NO 2699 i


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


LIMITED ANGLE CT RECONSTRUCTION USING
A PRIORI INFORMATION*

Kenneth M, Hanson

Group M-4

Los Alamos National Labnratory
Los Alamos, New Mexico

Abstract

Projection data that are limited in nunber
and range of viewing angle cannot completely
specify an arbitrary source function, In the
space of all permissible functions there exists
a null subspace about which the projection mea-
surements provide no information. Deterministic
reconstruction alqorithms usually set the null
space contributions to zero leading to severe
reconstruction artifacts. A Fit And Iterative
Reconstruction (FAIR) method is proposed that
incorporates a priori knowiedge ot the approx-
imate functional form of the source. In FAIR
the parameters of this functional model are
determined from the available projection data
by a weighted fitting procedure. The resulting
distribution is then iteratively revised to
bring the final estimate into agreement with
the measured projections using a standard al jo-
rithm such as ART,

Introduction

There are many situations in which it would
be desirable to obtain decent tomographic recon-
structions of an object from projec ion data that
are limited in number and/or range ¢ viewing

angle 1, Unfortunately there are severe limita-
tions 1mposed upon deterministic reconstruction
algorithms by limited angle projection data that
cannot be overcome without the use of a priori

knowledge about the object to be reconstructed [
We will roview these limitations that arise from
the null space corresponding to the available pro-
jection data. A pew approdch that incorporates
the expected shape of the reconstructed object
will be shown to circumvent the difficuities en-
countered by deterministic methods,

Measurement space - null space

The CT problem may ve stated as tollows:
yfven a finfte sot of projections of a function of
two dimensions f(x,y) with compact support, ubtain
the best estimate of that function,  The projec-
tions may qenerally be weitten as a weighted /-0
integral of f(x,y)

* o This work was supported by the U, S, Department
of Inergy under Contract No. W-7405-t HG-36

Pi 7 /7 h(x,y)f(x.yldxdy, (1)
where the h1 are the weighting functions and i=

1, 2, ...N for N individual measurements. we will
refer to the h1 as response functions. In the CT

problem the hi typically have large values within

a narrow strip and small or zero values outside
the strip. If the hi are unity within a strip and

zero outside, eq. 1 becomes a strip intearal.

For zero strip width, it becomes a line integral
These latter two cac2s are recognized as idealiza-
tions of the usual physical situation. The gener-
ality of eq. 1 allows it to closely represent
actual physical measurements since it can take
into account response functions that vary with
position,

The unknown function f(x,y) is usually re-
stricted to a certain class, e.g., the class of
all integrable functions with compact support.
Consider the space of a1l acceptable functions and
assume that all the hi beYong to that space.  Then
eq. 1 has the form of an inner product of h‘ with
f. That is, P
of the tnknown vector f onto the basis vector hr

may be thought of as a projection

Only those components of f that lie in the sub-
space spanned by the set of all h1 contribute to

the measurements. We will call this subspace the

.measurement space. The components of f in the

remaining orthogonal subspace, the null space, do
not contrituyte to the nieasurements. Hence, the
null space contribution to f cannot be determined
from the measurements alone. Since the determi-
nistic {(measurement) subspace of f is spanned by
the response functions, it is natural to expand
the estimate of f in terms of them

. N
f(h)‘) ° P_:I dih‘.()(.y). (2)

This is equivalent to setling the null space cun-
ponents of f to zero, which yrelds the minimum

norm solutfon,  This Teads to artitacts in 1 since
it does not possess those components of t that lie
in the null space.  Turther reading on the null
space = measurement space concept may be tound in
papers by Twor oy ©+ b



The response function expansion, eq. ¢, is
formally identical to the tamiliar backprojection
process where the value 8 is added to the imaye

along the strip function h;. Thus, the backpro-
jection process only affecls the measurement space
components of the reconstruction. Most of the
well-known CT reconstruction algorithms incorporate

backprojection including filtered backprojection®,
ART®, SIRT?, SIRT-1ike algorithms (least syuares®
and other varfants?®, and the “natural® pix2)

matrix formulation by Buonocore et alt0s11, Sych
algorithms can only alter the measurement space
part of the initial estimate. When the init'a)
estimate lies solely in the measurement space, as
1s normally the c se, so will the final estimite,

The effect of the restriction of determin-
istic solutions to the measurement Space may b2
demonstrated by means of an example. Consider
Fig. 1a to be an object to be reconstructed.
Suppose that eleven parallel projections are taxen

of the object within a 90° angular range. Each
rrojection contains 128 samples and is subject to
a slight degradation in spatial resolution. The
null space contribution to the original image may
be readily calcuiated by using Fig. la as the ini-
tial estimate for an fterative reconstruction
algorithm and setting the input projections to
zero. In this example an ART algorithm was used,
The atgorithm alters the measurement space pari of
the fnitial image (by means of backprojection)
unti! the result has zero projection vilues in the
measured projection directions., The result, lig,

1b, is the nul) space part of the «/iginal imaye.
Subtraction of Fig., 1b frea Fig. la yields the
measurenent suace nart of the & jginai mage, Fig.

ic. Ine null space component, Fig. 1b, is the part
of the object that cannot be determined from the
measurements alone. The sections of the annulus
that are roughly tangertial to the response func-
tions are nearly zero except for the abrupt changes
at the edye due to finite spatial resolution. The
upper-left and 'ower-right purtions of the annulus
are detemmined the worst., The measurcment space
part of the object, Fig, lc, is the minimum norm
solution consistent with the measurements and is
the best that can be expected from any 1inear,
deterministic algorithm,

Various augmentations to deterministic algo-
rithms such as consistency, analytic continuation,
and global constraints (including maximum entropy)

have been considered by Hansonl!, These seem to he
ineffective in overcoming the measurement space
restrictions presented above. Other authors have
mentioned in passing the concept of che measure-

mont space-null space dichotomy! bbb byt have
not considered its effect on reconstructions from
Timited prcjection data. As an aside, the range of
the trarspose of the projection measurement matrix
A referred to fn Ref. 15 45 the measurement space

in the square pixel representation. .ouis'" has
shown that spurious ghosts can arise from the null
space corresponding to a finite set of projection

data, Further references on the 1im <d angle (T
problem may he feund in Ref. 1.

The restriction of deterministic solutions to
the measurement space should not be viewed as a
negative conclusion. Rather it is simply a state-
ment of what is possible for a given set of mea-
surements in the absense of further infcrmation.
1t allows one to formally state the goal in limited
angle CT reconstruction as that of estimating the
null space contribution through the use of further
information aboui the function to be reconstructed.

FAIR - use of a priori_knowledge

We have seen in the foregoing development that
deterninistic soiutions are deficient because of
their lack of a null space contribution. Thus, we
are led to supplement the available measurements
with additional information about the object to be
reconstructed in order to obtain sose reasonable
estimate of its nul) space component. A priori
knowledge may take many forms. For example, it
may be known that the values of the function to be
reconstructed are restricted in any of several
ways such as upper and/or lower limits or known
discrete values. A commonly used reconstruction
constraint is that of positivity (strictly, non-
negativity) since the quantities often being re-
constructed, linear attenuation coefficients or
isotope densities, are known not to have negative
values. Positivity can exert a strong influence
on the reconstruction result in cases where the
reconstruction should be zero in a large portion
of tha reconstruction region, In other situations
it may be useless. Another type of a priuvri knowl-
edge it might be that i* is known that the object
to be reconstructed is taken from a well-defined
ensemble of objects. Then the reconstruction pro-
cedure could be based upon the ensemble probability
distributions as in maximun a posteriori probabil-

fty reconstruction using a SIRT-1ike alyorithm’

or d4s in a Karhunen-_céve expansion!?,  This ap-
proach may prove to work well only in situations
where the ensemble statistics are sufficiently
restrictive.

We wish to introduce a4 new method for using
a priort knowledge about the shape or form of the
object to be reconstructed. In this two step ap-
proach, the fit and iterdative reconstruction (FAIR)
technique, 1t 1s assumed that a parametric model
roughly approximating the object can be specified,
The first step 1s to fit the model parameters in a
least square (or minfmum chi sguared) sense to the
available projection data. The secend step is to
anploy an iterative reconstruction algnrithm, such
as ART, using the fitted model as the tmitial esti-
mete.  This step 1s needed since the tunctional
medel used in the first step may be necessarily
crude and fts projections may not fully ayree with
th> measurements., Fs discussed earlier, the second
stop only affects the measurement space part of the
reconstruction brincing it into agreement with the
avgtlable projectior data. The first step may be
viewed as providing a reasonable guess for the null



space contribution consistent with the functional
model. This approach will te demonstrated below
by means of two examples.

An important advantage of using the fitting
procedure in the FAIR technicue is its flexibility.
Additional parameters may be employed to allow the
position, orienta.ion and size of the object to be
adjusted. It is also possible tc incorporate con-
straints on the parameters to avoid unrealistic
objects. For example, in the annulus problems be-
low, it would be possible to allow each of the 2-D
gatssian basis functicns to be centered at an arbi-
trary radius instead of at a fixed radius. This
would permit the size and contour of the recon-
structed annulus to be determined from the measure-
ment data. The reconstruction could still be re-
stricted to an annular shape by adding a peralty
function to chi squared based on the quadratic dif-
ference between the radii of adjacent gaussians.
This would tend to force the radii to be a smcoth
function of polar angle.

The iterative reconstruction algorithm used
here in the second step of FAIR is a version of ART
developed at Los Alamos. In this version, the
present estimate of the reconstruction is stored as
a square pixel representation. The usual technique
is used of backprojecting differences between pro-
jections of the present estimate and the input pro-
jections. The algorithm used here differs from

earlier versions of ART? in that the basic projec-
tion and backprojection computations are carried
out in A way to more accurately represent the
corrcsponding analytic processes than the simpler
nearest neighbor assignment of pixels to projection
rays. The present ART routine typically converges
in three to five iterations to a stable solution
that does not change appreciably in subsequent it-
erations (up to 20). When faced with noisy input
projections, the reconstruction te..ds to diverge
slowly after five iterations as has been observed

before for ARTIM,
Example ]

The first example will be basad an the obiect
shown in Fig. la that resembles a thick-walled pipe
with two inclusions. Where the image width s 1,0,
the inner and outer radii of the annulus are (.¢
and 0,3, respectively, The two small circles have ¢
diameter of 0.0% and are at half the density of tne
annutus. It will be assumed that eleven parallel,
noiseless projections over a range of 90" are
available, Lach projection consists of 128 samples,
The unconstrained ART reconstruction starting with
the average value, Fig. 2a, fs virtually identical
with the measurement space component of the object,
Fig. lc.o The positivity constraint greatly reduces
the streaking artifacts, Fig. 2b, but does not
eliminate the squaring of f of the rear and fav
sides of the annulus that arises from the lack of
projections over the remaining 90, The maxinum
entropy algorithm MENT'™ produces a very similar
result, Fig. Z2c. MENT does not degrade the spatial
resolutfon as much as ART because the representa-
tion of the MLNT reconstruction is directly related

to the response function expansion instead of the
square pixel representation used in ART. Besides
distorting the shape of the annulus, all of these
reconstructions make it difficult to observe the
two small circles.

It will be assumed that it is known a priori
that the object to be reconstructed has an annular
shape of known radius and width. Let us choose
for a model of this object a linear combination of
18 two dimensional gaussian distributions whose
centers are equally spaced on a circle of appro-
priate radius. The FWHM of the gaussians is the
same as the width of the annulus. The amplitudes
are to be determined by fitting the projections of
this functional model to the prnjection data. It
is realized at the outset that this model is a
crude representation of the actual object but it
will yield a distribution restricted te an annulus
and has the computational advantage that its pro-
jections are easily calculated. Fig, 3a snows the
result of fitting the amplitudes of the 18 gauss-
ians to best match the 11 projections, the first
step in FAIR, Thera is hardly a hint of the two
small circles since the amylitudes have been se-
verely distorted to make up for the discrepancy
between the assumed and actual cross sections.
However, using Fig. 3a as the starting distribu-
tion, the ART algorithm produces the fi~al results,
Fig. 2b withnut positivity and Fig. 3c with posi-
tivity. These results preyide nuch better visual-
jzation of the small circles in the original ob-
ject than the reconstructions in Fig, 2. The
major advantage of starting ART with Fiy, 2~ is
that fig. 3a properly positions the near and far
sections of the annulus and thus the squaring off
is avoided. 7The incorporation of a reasonable
estimate of the null space contribution through
Fig. 3a is seen to greatly improve the reconstruc-
tion result.

It has been proposed"“”]""" that one way to
overcome the limitations arising from Vimited pro-
decuion angles is to exploit a priori information
concerning the vegion of support of the unknown
function. One way to do this is to use an adapta-
tion of the Papoulis-Gerchberg technigque in which
the known propertics of the function are alterna-
tively enforced in the spatial and Fourier domains.

It has been shown '+ that this technique is not
sufficient to recover all the degrens of freedon
in the original function. The ART reconstruction
algorithm may be easily altered to i.corporate a
known reqgion of support and upon convergence the
resu't should be identical to that obtained by the
above technique.  The result of specifying a cir-
cular region of support just outside the annulus
in Fig. Ta {s shown in Fig. 4a. This certainly
improves the reconstruct fon (compared with 1. 2b)
but does not reproduce the original {mage.

We have seen in the FAIR results that the int-
tial chofee for ART can maka a big difference in
the final resylt., Fig. 4b shows ihe ART cocon-
struction that results when a flat annulus of prop-
er dimensions {5 used for the starting distribu-
tion.  This would be @ reasonable quess Hf it were
ktiown that the object beiag examined was a pipe



but the nsence of the small holes was unknown.
Figure 4. s a very good reconstruction because the
null space ,art of Fig. la is well specified by the
flat annulus. However, if a flat annulus of the
wrong size is hosen for the starting distribution,
the result {Fic. 4c) is much worse than the stan-
dard ART result, fig 2a, It is important that the
starting distribution bn reprasentative of the un-
known object. The advantage of the FAIR approach
je evident since the parameters for the flat annu-
lus mndel could ~asily and accurately be obtained
from the projection data to yteld Fig. 4b.

[t is important to realize that all of the ART
reconstructions shown in this section have the same
projections at the measured projection angies, i.e.
their measurement space contributions are identi-
cal. They differ only in their null space contri-
butions, these being determined by the combined
effect of constraints and starting distributions.
This observation indicates the enormity ol the am-
biguity present in the measirements that can only
be reduced by use of a priori information.

Example 2

The second exampie will be based on an annulus
with gaussian cross section énd variahle amplitude,
Fig. 51, This object is similar to the blurred
cross section of the Thallium 201 distribution
taken up in heart muscie,  The straightforward ART
roconstructions from 11 viewings subtending 90”,
Fig. Sb and ¢, show the same types of artifacts as
in the preceeding example.  The hole in the upper-
right. quadrant has virtually disappeared while that
in the lower right has been groatly exagarrated,
Use of the 18-grussian annulus model described
above in the fitting step of FAIR yiclds, Hig. o,

a docent represental ion of the ageiginal object be-
cause the gaussian bavie tunetions proyide a qood
approximation to the yaussian cross section of the
annulus,  When this fs used as the starting distri-
bution fn an unconstratned ART algorithm, the final
resuit, Fig, Gb, reproduces the original distriby-
tion very well. Since this stating distribution
0 closely matches the projection adata, the posi-
tivity constraint has 1ittie of fect on the resylt.,
Fiqure 7 shows that, even when an annutus with
gaussian cross section and constant amplitude f{s
used for the starting distribution, the uncon-
stratned AR reconstruction yields an accoptable
rosult,  This indicates that reconstruction methods
hased on ensembln statistics may work well since
their inftial estimate is the ensemble mean, which
could be a flat annulus for thalltium 201 distribu-
tione in the heart walls,

Ine foregoing results ave quantitatively sum-
marized in Fig. 8, The maximum ceconstruction
vaine botween radit of 0.5 and 1.4 times the mean
annylves radius is plotted versus polar angl«. [t
in obwverved that the TATR result that starts with
the fitted distribution, Fig, 6a. comes remarkably
Close to the orfginal distribution,  This ts con
trasted by the conventional ART veconstruct fon that
starts with the average value which does very poor:
ly.  Agatn, the use of a priovi knowledge to osti-

mate the nell space contelbutlon 15 vevy beneficlal,

Discussion

It has been shown that artifacts arising in
the limited angie CT problem can be reduced by
properly estimating the null space contributions of
tise unknown function. This can only be accom-
plished through the use of a priori knowledge con-
cerning the source function. In the FAIR technique
presented here, the initial estimate of the func-
tion is obtained by fitting the paramelers in a
functional model of the object to the available
projection measurements. The null space contribu-
tion of this estimate survives the subsequent iter-
ative reconstruction procedure to reduce the arti-
facts in the result, As with most image processing
schenes, this new technique must be tried in each
new imaging problem to assess its worth since expe-
rience is not easily transferred. We have at-
tempted to provide the reader with some understand-
ing of the behavior of the FAIR tecrnique by means
of several examples,
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fig. 1 - The decomposition of an object consisting of sn annulus with two holes a) into ts measurement
space b) ard null space ¢) contributions corresponding to 11 measured projections covering 90",
This illustrates that for a given measuremert scheme, any function is the sum a part that is

measured and a part that is not.

- Reconstractfons of g, la from 1 views covering 90" using a) unconstrained ART (average starting
value), b) ART with positivity, and ¢) the maximum entropy alqorithm MENT,



Fig. 3 - The Fit And Iterative Reconstruction (FAIR) results for Fig. la from 31 views ccoveriny 90" showing
2) the 18-gaussian fit tc the measurements used for the initial guess in the subsequent ART
reconstruction, b) without positivity, and ¢) with positivity.

Fig. 4 - Reconstruction of Fig. la from 11 views covering 90" using ART a) with positivity and the recon-
struction region limited to a circle that 1s slightly larger than the annulus. Reconstruction

from same projections with a uniform annulus used for the starting distribution, b) of proper
size, and c¢) of too small radius.

Yy, L a) An annulus with gaussian cross section and variable amplitude and its reconstrustion from 1)
views covering 937 using b) unconstrained ART (average starting value) and ¢) ART with positivity
constraint.
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Fig. 6 - FATR reconstruction of Fig. 5a from 11 views covering 90° showing the a) 18 gaussian fit and
final ART reconstruction b) without positivity constraint., The use of a positivity constraint
makes little difference.

Fig. 7 - Reconstruction of Fig. 5a trom 11 views covering 90" using an initial guess of an annulus with
gaussian cross section and constant amplitude in ART algorithm
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Fig. 8 - Angular dependence of maximum reconstruc-

tion value between radii of 0.5 to 1.5
times mean annulus radius for positivity
constrained ART reconstructions employing
various starting distributions. The fitted
starting distribution used in FAIR (Fig.
6b) closely matches the original object
while starting with the constant amplitude
anaulus (Fig. 7) does remarkably well

The conventional initial guess of a con-
stant distribution with correct value (Fig.
he) results in poor agreement.



